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Table 4. Deviations from planarity

C, = —0:006 A Cy = +0014 A C, = +0-069 A
C, = —0-001 Cp = —0-012 C, = +0-055
C, = —0-005 C;3 = —0-031 C, = +0-062
Cy = +0023 Cyq = +0-012 C, = —0-062
Cy = +0-014 0,5 = —0-007 Ny, = +0-096
Cpo = +0-027 O, = —0-009

C,, C,, C,, and C, are similarly displaced from plane (ii).

The dimensions of the molecule (Fig. 3) are generally
consistent with the normally accepted values. The
two C-N bonds have both the same length of 1-39 A.
Similar shortenings of the normal C-N single bond
lengths of 1-47 A have been found in other heterocyclic
compounds and have been listed by Brown (1949).
Of the two C=0 bond lengths C4—O,; is 1-21 A and
C,0-0y; is slightly longer at 1-23 A. The four single
C-C bonds, C,y—Cyy, Ci—Cyp3, CyCy;, Cg—Ci,, have
lengths 1-49, 1-50, 1-48, and 1-50 A respectively. The

185

nitrogen atom is intramolecularly hydrogen-bonded to
the adjacent oxygen atom, the N-H bond length being
1-01 A as deduced from the hydrogen position mea-
sured from the [b] difference synthesis.

References

B.I. 0. 8. (1945). German Dyestuffs and Intermediates
Industry. Final Report 987, Item 22, p. 165. Tondon:
Raw Materials Department, Board of Trade.

Brown, C. J. (1949). Acta Cryst. 2, 228.

CruICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.

F.I.A.T. (1948). German Dyestuffs and Intermediates.
Final Report 1313, vol. ITI, Dyestuffs Research, p.441.
Washington: Technical Industrial Intelligence Divi-
sion, U. S. Department of Commerce.

RoBERTSON, J. M. (1935). J. Chem. Soc. p. 615.

Staprer, H. P. (1953). Acta Cryst. 6, 540.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about
500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily
as possible; and proofs will not generally be submitted to authors. Publication will be guicker if the contributions

are without illustrations.

Acta Cryst. (1955). 8, 185

On the treatment of unobserved reflexions in the least-squares adjustment of crystal struc-
tures. By Warter C. HamiLton*, The Mathematical Institute, Oxford, England

(Received 15 December 1954 and in revised form 31 December 1954)

In the refinement of crystal structures by the least-
squares method, the problem is often complicated by the
question of what is the proper way to deal with un-
observed reflexions, i.e. reflexions for which 0<{F2<F2 .
It is obvious that an observation that a particular re-
flexion has a value in a certain range, in particular the
range above, may be fully as important in the determina-
tion of a structure as observations of a more precise
nature. It is the purpose of this note to point out a method
of dealing with unobserved reflexions which is demanded
by the spirit of least-squares adjustments.

Now the problem of least squares is to find (under the
minimum variance criterion) the expected values for a
set of parameters under the condition that a set of linear
combinations of these parameters (the observables) have
been observed to have certain values. These values are
by their very nature unprecise; else there would be no
need to call on the least-squares procedure. Actually,
we may generalize the statement to say that we observe
certain conditions which the observables must satisfy.
The solution of the least-squares problem tells us that
the best values of the parameters are given by the solu-
tions of the normal eguations with the value of each ob-
servable being taken as its expected value or mean (u)

* National Science Foundation Post-Doctoral Fellow, 1954—
55.

under the conditions which the observations impose,
together with any conditions we may assume about its
possible value, and weighted inversely proportional to its
variance (0%) under these conditions.}

The application of this point of view to observed re-
flexions is straightforward, the mean value of the distribu-
tion of the corresponding observable being simply the
observed value.] The weights are chosen by a more or
less direct analysis of the experimental errors, usually
combined with some scheme which contributes computa-
tignal simplicity.

For unobserved reflexions, the best procedure is to
determine the mean value and variance of an observation
in the unobservable range, assuming that the probability
distribution is the theoretical one for the space group
under consideration (in the later stages of refinement,
for the actual structure). Howells, Phillips & Rogers
(1950) have derived the distributions for the space

t The case of correlated observational errors and the
consequent non-diagonal weight matrix will not be discussed
here. However, see W.C. Hamilton & Verner Schomaker,
The Method of Least Squares in Electron Diffraction (to be
published) for a more detailed discussion of some of these
points.

1 This is the case if an observation yields a definite number.
If the intensities are visually estimated to lie in a certain
range, the analysis below might well be more suitable.
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groups P1 and PT, and their results will be used below.
In the following formulae, z = Imin/lav. = Fryn /Fay. is
the ratio of Inin. to the average I over a shell of constant
sin? §, and N(z) is the cumulative distribution function.

Pl
N(z) = Sze—‘dt
1]

wlz) = S:te—‘dt/N(z)

= 1—2e—%/N(2)
~ z[2

0%(z) = Sjtze—‘dt/N(z)— ut
= 2u—pP+z(u—1)

~ 2312
PI
N(z) = erf (2/2)}
1 ¢z
= Yo
1 ¢z
ue) = oo\ emtrayne)
2
= V (;) 2ke—12[N(z)
~ 2|3
1 ¢z
o%(z) = T Soe 1131248 N (z) — p?
= 3u—ptta(u—1)
A 42%/45

From the definition of z we have u(Imin.) = Iav.u(z) and
62(Imin.) = I%, 6%(z), and thus, for the two cases above,
we have approximately

Pl PT
p#r Inin [2
o2 Ioin J12

s Inpin [3
olay 4l [45

SHORT COMMUNICATIONS

For practical purposes, these values may be taken as the
proper ones for all acentric and centric space groups for
all but the very finest refinements.*

Each unobserved reflexion must, to be consistent with
the least-squares motivation, be entered into the re-
finement with its appropriate mean value and weight,
as determined from the theoretical distribution. It is a
mistaken notion that only those unobserved reflexions
which have F;, > Fi;, ata particular refinement stage
should be entered in the succeeding refinement. Even in
the event that all the calculated structure factors are
less than the minimum observable values, these reflexions
must properly be included in the next refinement to
obtain reliable estimates of error, which is one of the
most useful features of the least-squares procedure.

References

Howsrts, E. R., Pamrres, D. C. & Rocers, D. (1950).
Acta Cryst. 3, 210.
RoGeRs, D. (1950). Acta Cryst. 3, 455.

* The average intensity for a group of special reflexions
may differ by an integral multiple from that for general (hkI)
reflexions. These multiples depend on the symmetry elements
present and may be as great as twelve; a table of their values
for all the space groups is given by Rogers (1950). For such
reflexions, z must accordingly be defined with the local
average being taken over the group characterized by the same
multiple, or, better, as the appropriate multiple times the
local average for the non-special reflexions. However, to the
approximation considered above, this factor does not enter
the expressions for the mean values or variances of the inten-
sities. For example, the next term in the series expansion for
the variance in the acentric case is —2z%/240, so that the vari-
ance of the intensity to this degree of approximation is
I, fnm/l2—zzl fmn./240. In the present application, z will in-
variably be considerably less than unity, so that the second
term is very unimportant. In the very rare case where it is
large enough to be significant, use of the correct multiple is
of course necessary.

Note§ and News

Announcements and other items of crystallographic interest will be published under this heading at the discretion of the
Editorial Board. Copy should be sent direct to the British Co-editor (R. C. Evans, Crystallographic Laboratory,

Cavendish Laboratory, Cambridge, England).

Indexing Charts

The Battelle Memorial Institute announces that sets of
indexing charts for the tetragonal, hexagonal and ortho-
rhombic systems are available. The tetragonal and
hexagonal charts cover ¢/a ratios from 0-2 to 5:0. The

orthorhombic charts cover the range of b/a from 0-99 to
0-70 and c¢/a from 0-2 to 5-0. The set is available upon
request for ‘Battelle Indexing Charts for Diffraction
Patterns of Tetragonal, Hexagonal and Orthorhombic
Crystals’ to Battelle Publications Office, 505 King
Avenue, Columbus 1, Ohio, U.S.A.



